On the Modularisation of Independence in Dynamic Bayesian Networks
نویسندگان
چکیده
Dynamic Bayesian networks are Bayesian networks which explicitly incorporating the dimension of time. They are distinguished into repetitive and non-repetitive networks. Repetitive networks have the same set of random (statistical) variables and independence relations at each time step, whereas in non-repetitive networks the set of random variables and the independence relations between these random variables may vary in time. Due to their structural symmetry, repetitive networks are easier to use and are, therefore, often considered as the standard dynamic Bayesian networks. However, repetitiveness is a very strong assumption, which usually does not hold, because dependences and independences that only hold at certain time steps may be lost. In this paper, we propose a new framework for the modularisation of non-repetitive dynamic Bayesian networks, which offers a practical approach to coping with the computational and structural difficulties associated with unrestricted dynamic Bayesian networks. This framework is based on separating temporal and atemporal independence relations in the model. We investigate properties of the modularisation and show to be compositive.
منابع مشابه
Independence Decomposition in Dynamic Bayesian Networks
Dynamic Bayesian networks are a special type of Bayesian network that explicitly incorporate the dimension of time. They can be distinguished into repetitive and non-repetitive networks. Repetitiveness implies that the set of random variables of the network and their independence relations are the same at each time step. Due to their structural symmetry, repetitive networks are easier to use an...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017